
Enterprise PL/I for z/OS and OS/390 IBM

Compiler and Run-Time Migration Guide
Version 3 Release 1

 GC27-1458-00

Enterprise PL/I for z/OS and OS/390 IBM

Compiler and Run-Time Migration Guide
Version 3 Release 1

 GC27-1458-00

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix A, “Notices” on page 35.

Third Edition (November 2001)

This edition applies to Version 3 Release 1 of Enterprise PL/I for z/OS and OS/390, 5655-H31, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department BWE/H3
P.O. Box 49023
San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 International Business Machines Corporation 1998,2001. All rights reserved.

 Contents

Chapter 1. Introduction . 1
General concerns . 1
Run-time environment for Enterprise PL/I . 2
Using your documentation . 3

Chapter 2. Installation considerations . 4
Product information . 4
Considerations for using assembler user exits . 5

Specific considerations . 5
Considerations for using high-level language user exits 5

Chapter 3. Compile-time considerations . 6
Mixing Object Levels . 6
Dependency on Language Environment . 6
Compile-time options not supported by Enterprise PL/I 7
Compatibility considerations and restrictions . 7

OS PL/I Version 1 source code . 7
ENTRY statement . 8
Array expressions . 8
Structure expressions . 9
DEFINED variables . 9
DBCS . 9
Stream I/O . 9
Record I/O . 10
Built-in functions . 10
Batch compilations . 10
Miscellaneous unsupported elements . 11

Storage report changes . 11
Compiler messages . 11
Messages that PL/I issues for errors in the PLIXOPT string 11

Chapter 4. Link-edit considerations . 13
Using FETCH in your routines . 13
Using PLICALLA or PLICALLB entry . 13
ENTRY CEESTART requirement . 13
Restrictions on using the binder . 14

Chapter 5. Run-Time Considerations . 15
Differences in PLICALLA and PLICALLB Support 15

PLICALLA considerations . 15
PLICALLB considerations . 16

Differences in preinitialization support . 18
Differences in DATE/TIME built-in functions . 18
Differences in user return codes . 18
Differences in Condition Handling . 19
Differences in run-time messages . 21
Differences in PLIDUMP . 21
Differences in run-time options . 22
Differences in storage report . 24
Differences in interlanguage communication support 24

 Copyright IBM Corp. 1998, 2001 iii

Differences in assembler support . 25
Differences in language element behavior . 26
Differences in Descriptor Format . 27
Differences in AMODE(24) Support . 27

Chapter 6. Tuning your Enterprise PL/I program 28
Improving CPU utilization . 28
Improving storage utilization . 29
Improving performance under IMS . 29

Chapter 7. Subsystem considerations . 30
CICS considerations . 30

Updating CICS System Definition (CSD) file 30
Macro-level interface . 30
SYSTEM(CICS) compile-time option . 30
Linking Enterprise PL/I applications under CICS 31
FETCHing a PL/I MAIN procedure . 31
Run-time output . 31
Abend codes used by PL/I under CICS . 31

IMS considerations . 31
Interfaces to IMS . 31
SYSTEM(IMS) compile-time option . 32
PLICALLA Support in IMS . 32
PSB language options supported . 32
Assembler driving a PL/I transaction . 33
Storage usage considerations . 33
Coordinated condition handling under IMS . 33
Performance enhancement with Library Retention(LRR) 34

DB2 considerations . 34

Appendix A. Notices . 35
Trademarks . 37

Bibliography . 38
Enterprise PL/I publications . 38
PL/I for MVS & VM . 38
z/OS Language Environment . 38
CICS Transaction Server . 38
DB2 UDB for OS/390 and z/OS . 38
DFSORT . 38
IMS/ESA . 38
z/OS MVS . 38
z/OS UNIX System Services . 38
z/OS TSO/E . 38
z/Architecture . 39
Unicode and character representation . 39

Index . 40

iv Migration Guide

 Chapter 1. Introduction

This book contains information to help you migrate applications from previous
releases of PL/I to Enterprise PL/I and OS/390 Language Environment. It suggests
solutions to problems that arise because of differences in support between previous
releases of PL/I (OS PL/I and PL/I for MVS & VM) and Enterprise PL/I.

 IMPORTANT

The information in this book discusses migration considerations using Enterprise
PL/I V3R1M0 and OS/390 V2R10 Language Environment or later. These two
products must be installed in order to take advantage of the migration
enhancements discussed in this book. The use of Enterprise PL/I will always
refer to Version 3 Release 1.0 unless indicated otherwise. The use of
Language Environment will always refer to OS/390 V2R10 Language
Environment or later unless indicated otherwise.

This book is for system programmers, application programmers, and IBM support
personnel who are involved in PL/I product migration. Prerequisite knowledge for
using this book is:

� A general understanding of your operating system
� Some knowledge of the PL/I language and options
� Some knowledge of how PL/I uses Language Environment for its run-time

environment

 General concerns
This list of concerns is merely a representative list that reflects what has been
important to some customers. It may not indicate what is important to any one
individual customer. More details are provided in the rest of this book.

� Enterprise PL/I runs only under Language Environment 2.10 or later. If you
have not migrated to Language Environment, then the migration task is more
complicated.

� Enterprise PL/I has no support for VM.

� Enterprise PL/I has no support for multitasking (but it does support
multithreading).

� Use of PDSE's is required unless either the prelinker is used or unless the
compiler options NORENT LIMITS(EXTNAME(n)) (with n <= 8) are used.

� Code that is incorrect or invalid (for instance, code that uses uninitialized
variables) may not run the same. This may not seem like an important
problem, but it has been a significant issue for most of the customers that have
migrated.

� Programs may need to be tuned for optimal performance. In particular, the use
of the runtime option RPTSTG(ON), while useful when tuning, is much more
costly now to leave on in a production program.

� Recompiling all your PL/I source is recommended; if this isn't done, the
following options should be used:

 Copyright IBM Corp. 1998, 2001 1

– CMPAT(V2) (or CMPAT(V1) is that's what currently being used with old
PL/I)

– DEFAULT(LINKAGE(SYSTEM))

– LIMITS(EXTNAME(7))

 – NORENT

� Even if the options listed immediately above are used, there are some
restrictions on mixing old and new object code:

– CONTROLLED variables cannot be shared between old and new code.

– FILE variables and constants cannot be shared between old and new code.
However, a file written out by old code can be read by new - and vice
versa.

– The new code must be compiled with the NORENT option.

– Whenever old code is used, all fetch/release restrictions from the older
product apply. In particular, if a new MAIN does successfully FETCH and
CALL an old module, then the old module cannot perform a subsequent
FETCH of another module.

– Old code, even if compiled with PL/I for MVS & VM, cannot FETCH a new
module linked as a DLL.

– For old code compiled with OS PL/I V2R3 or earlier:

- An old MAIN not linked with LE cannot FETCH a new module.

- A new MAIN cannot CALL or FETCH an old module unless either the
old or new module is linked with SCEELKED and with INCLUDE
SYSLIB(CEESG010).

Run-time environment for Enterprise PL/I
Enterprise PL/I uses Language Environment as its run-time environment. It
conforms to Language Environment architecture and shares the run-time
environment with other conforming languages such as C/370, C/C++, COBOL, and
Fortran.

Language Environment is the common run-time environment for the following
language compilers:

 C/370
 C/C++

COBOL for MVS & VM
COBOL for OS/390 & VM

 Fortran
PL/I for MVS & VM

 Enterprise PL/I

It provides a common set of run-time options and callable services. It also
improves interlanguage communication (ILC) between high-level languages (HLL)
and assembler by eliminating language-specific initialization and termination on
each ILC invocation. Language Environment provides compatibility support for
existing applications with a few restrictions.

2 Migration Guide

Using your documentation
The publications provided with Enterprise PL/I are designed to help you program
with PL/I. The publications provided with Language Environment are designed to
help you manage your run-time environment for applications generated with
Enterprise PL/I. Each publication helps you perform a different task.

The following tables show you how to use the publications you receive with
Enterprise PL/I and Language Environment. You'll want to know information about
both your compiler and run-time environment. For the complete titles and order
numbers of these and other related publications, see “Bibliography” on page 38.

 PL/I information
Table 1. How to use Enterprise PL/I publications

To... Use...

Evaluate Enterprise PL/I Fact Sheet

Understand warranty information Licensed Programming Specifications

Plan for and install Enterprise PL/I Enterprise PL/I Program Directory

Understand compiler and run-time changes and
adapt programs to Enterprise PL/I and Language
Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference

Diagnose compiler problems and report them to IBM Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment information
Table 2. How to use OS/390 Language Environment publications

To... Use...

Evaluate Language Environment Concepts Guide

Plan for Language Environment Concepts Guide
Run-Time Migration Guide

Install Language Environment on OS/390 OS/390 Program Directory

Customize Language Environment on OS/390 Customization

Understand Language Environment program models
and concepts

Concepts Guide
Programming Guide

Find syntax for Language Environment run-time
options and callable services

Programming Reference

Develop applications that run with Language
Environment

Programming Guide and your language
Programming Guide

Debug applications that run with Language
Environment, get details on run-time messages,
diagnose problems with Language Environment

Debugging Guide and Run-Time Messages

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Applications

Migrate applications to Language Environment Run-Time Migration Guide and the migration
guide for each Language Environment-enabled
language

 Chapter 1. Introduction 3

 Chapter 2. Installation considerations

This chapter contains product information you need to know at installation time. It
discusses differences in user exits and effects of Language Environment Abnormal
Termination Exit.

The Language Environment run-time options that you might want to consider at
installation time are described in “Differences in run-time options” on page 22.

 Product information
Enterprise PL/I has renamed its parts so that, if you want to, you can install it in the
same SMP/E zone as OS PL/I. To help you identify the elements of each product,
the following table lists the name differences:

Language Environment must be available before you can compile, prelink, link-edit,
and run a Enterprise PL/I application. If you attempt to compile a program before
installing Language Environment, the program will not compile and a message will
be generated. A STEPLIB concatenation for SCEERUN must be added in the
compile. The details of the data sets and modules shipped with Enterprise PL/I
and Language Environment can be found in one of the documents listed below. If
you want to know the names of the data sets and modules, storage requirements,
or other details specifically for installation planning, refer to one of these
documents:

Enterprise PL/I Program Directory
OS/390 Program Directory
OS/390 V2R10 Language Environment Customization

There are additional requirements you need to be aware of before you begin to use
Enterprise PL/I and Language Environment.

You must have access to Language Environment when you compile your
Enterprise PL/I application. When you compile your application and you use
existing JCL, be sure your STEPLIB or JOBLIB statement includes SCEERUN
(Language Environment run-time library). You can use the IBMZC cataloged
procedure to compile PL/I applications.

Your compile step should include the following:

//PLI EXEC PGM=IBMZPLI,REGION=4���K
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR

Table 3. PL/I element names

OS PL/I PL/I for MVS & VM Enterprise PL/I

IEL0AA IEL1AA IBMZPLI

IKJEN00n IEL1IKJn

IEL0nn IEL1nn IBMZnn

PLInnnnn IEL1Mnnn IBMZMnnn

PLIXnnn IEL1nnn IBMZnnn

PLIHELP IEL1PLIH IBMZPLIH

4  Copyright IBM Corp. 1998, 2001

Reading about the cataloged procedures provided with Enterprise PL/I can help you
understand the use of SCEERUN during compilation. “Using PL/I Cataloged
Procedures” is a chapter in Enterprise PL/I for z/OS and OS/390 Programming
Guide.

When you link-edit your Enterprise PL/I application with Language Environment and
you use existing JCL, be sure your SYSLIB statement includes SCEELKED
(Language Environment link-time library).

Language Environment also provides the SIBMCAL2 library which you must
specify, in the SYSLIB dataset concatenation, before SCEELKED if you use
PLICALLA or PLICALLB.

You must specify SYSLIB if you plan to use it. Do not include SYSLIB unless you
are using a LINKLIB which already includes SCEELKED.

Considerations for using assembler user exits
The only Assembler user exit supported by Enterprise PL/I is the Language
Environment user exit CEEBXITA. IBMBXITA and IBMFXITA are not supported.
For a detailed parameter description for CEEBXITA, see OS/390 Language
Environment Programming Guide..

 Specific considerations
� The PL1DUMP, PLIDUMP or CEEDUMP file for the dump output is treated as

a process resource and must not be cleared during enclave termination.

� The OS PL/I abend exit IBMBEER is ignored under Language Environment.
See “Differences in Condition Handling” on page 19 for information on how to
force an abend under Language Environment.

For more information on assembler language user exits, see OS/390 Language
Environment Programming Guide..

Considerations for using high-level language user exits
The OS PL/I Version 2 High-Level Language (HLL) user exit IBMBINT is not
supported. Enterprise PL/I MAIN load module supports only CEEBINT. The load
module always contains a copy of CEEBINT, either the application-specific one or
the default one provided by Language Environment.

If you write a CEEBINT exit in PL/I, it must be compiled with Enterprise PL/I. If the
CEEBINT exit calls any PL/I routines, those routines must also be compiled with
Enterprise PL/I.

Do not use the OPTIONS(MAIN) statement in the user exit.

Execution of the STOP statement in the CEEBINT exit will terminate the
application.

 Chapter 2. Installation considerations 5

 Chapter 3. Compile-time considerations

This chapter describes compile-time considerations when your run-time
environment is Language Environment. You'll find out what OS PL/I Version 1
source code is supported in Enterprise PL/I.

The major factors to consider before migrating to Enterprise PL/I are:

� There is no VM support.

� Multitasking is not supported; however, multithreading is supported.

� There is no support for compilations under TSO.

Consider recompiling your OS PL/I and PL/I for MVS & VM applications with
Enterprise PL/I. Support for combining object and load modules from previous PL/I
releases with Enterprise PL/I object is limited.

Mixing Object Levels
Support for mixing objects produced by Enterprise PL/I and previous versions in a
single application is limited. If you attempt to mix old and new objects, it is strongly
recommended that you use the following compiler options:

� CMPAT(V2) (or CMPAT(V1) if your old code was compiled with that)

� DEFAULT(LINKAGE(SYSTEM))

� LIMITS(EXTNAME(7))

 � NORENT

The CMPAT(V2) (or CMPAT(V1)) option is needed where a string, array or
structure is passed to or received from non-PL/I code. This occurs, for example,
when a DB2 stored procedure written in PL/I is passed a string.

The following are not supported:

� FILE variables and constants cannot be shared between old and new code.
However, a file written out by old code and can be read by new - and vice
versa.

� Controlled variables cannot be shared between old and new.

� Entry variables cannot be shared unless the NORENT compiler option
 is used

Dependency on Language Environment
Language Environment must be available whenever you compile a PL/I application.
Language Environment is the run-time environment for the Enterprise PL/I compiler.

6  Copyright IBM Corp. 1998, 2001

Compile-time options not supported by Enterprise PL/I
Enterprise PL/I does not support the following compile-time options:

CONTROL NOINCLUDE
DECK SEQUENCE
ESD SIZE
FLOW SMESSAGE
LMESSAGE

The following compile-time options have had the indicated suboptions dropped:

LANGLVL NOSPROG/SPROG (SPROG is always in effect)
LIST m,n
SYSTEM CMS, CMSTPL

The meaning of the following compile-time options has changed:

INCLUDE The old meaning of INCLUDE (enabling %INCLUDE
statements without use of the macro preprocessor) is always
in effect in Enterprise PL/I. The new INCLUDE option is
used under OS/390 UNIX System Services to help the
compiler find the right include file.

OFFSET This option no longer produces an offset table in the listing,
instead, this option determines how offsets are presented in
the listing: NOOFFSET produces offsets from the compile
unit, and OFFSET produces offsets from the procedure.

Compatibility considerations and restrictions
There are some behavioral differences between the Enterprise PL/I compiler and
previous PL/I compilers. As a result, the Enterprise PL/I compiler imposes some
restrictions or may produce different results than when using source code created
for OS PL/I or PL/I for MVS & VM. These differences are described in the following
sections.

OS PL/I Version 1 source code
Enterprise PL/I compatibility with OS PL/I Version 1 source code is supported with
the following exceptions:

� CHARSET(48) and CHARSET(BCD) are no longer supported. Support for
these options were dropped by OS PL/I Version 2; however, there is an
IBM-supplied tool that will convert the source.

� Graphic DBCS varies slightly from old EGCS in that the shift-in and shift-out
code points are fixed.

� Suffixes that follow string constants are not replaced by the
preprocessor—whether or not these are legal PL/I suffixes—unless you insert a
delimiter between the ending quotation mark of the string and the first letter of
the suffix. For example:

 Chapter 3. Compile-time considerations 7

%DCL (GX, XX) CHAR;
%GX='||FX';
%XX='||ZZ';
DATA = 'STRING'GX;
DATA = 'STRING'XX;
DATA = 'STRING' GX;
DATA = 'STRING' XX;

under Version 1 produces the source:

DATA = 'STRING'||FX;
DATA = 'STRING'||ZZ;
DATA = 'STRING' ||FX;
DATA = 'STRING' ||ZZ;

whereas, under Enterprise PL/I it produces:

DATA = 'STRING'GX;
DATA = 'STRING'XX;
DATA = 'STRING' ||FX;
DATA = 'STRING' ||ZZ;

� CHECK statement, CHECK prefix, and CHECK condition support was dropped
by PL/I for MVS & VM.

 ENTRY statement
The ENTRY statement is supported with the following restrictions:

� All parameters must be BYADDR. The default compiler options will force this
action.

� RETURNS must be BYADDR if an aggregate. The default compiler options will
force this action.

� Return value, if any, will be converted to the attributes in the most recent
PROC or ENTRY statement with a RETURNS option.

The following example shows how returns value might be converted:

a: proc; /+ return value is undefined +/
b: entry returns(fixed bin); /+ return value converted to fixed bin +/
c: entry; /+ return value converted to fixed bin +/
d: entry returns(fixed dec); /+ return value converted to fixed dec +/

end;

 Array expressions
An array expression is not allowed as an argument to user functions unless it's an
array of scalars of known length.

The following example shows numeric array expressions supported in calls:

dcl x entry, (y(1�),z(1�)) fixed bin(31);

call x(y + z);

The following unprototyped call would be flagged since it requires a string
expression of unknown size:

8 Migration Guide

dcl a1 entry;
dcl (b(1�),c(1�)) char(2�) var;

call a1(b || c);

However, the following prototyped call would not be flagged:

dcl a2 entry(char(3�) var);
dcl (b(1�),c(1�)) char(2�) var;

call a2(b || c);

 Structure expressions
Structure expressions are supported in assignment statements, including BY NAME
assignments, with the following exceptions:

� Structure expressions as arguments are not supported unless both of the
following conditions are true:

– There is a parameter description.
– The parameter description specifies all constant extents.

 DEFINED variables
Support for iSUB defining is limited to arrays of scalars.

Simple DEFINED variables are supported only for the following:

 � Scalars

� Structures with constant extents matching those in the base variable

� Arrays of such scalars and structures as long a the array is not based on a
controlled variable

When simple defining does not apply, string-overlay defining is assumed and
flagged with an E-level message (as is true with PLIOPT).

 DBCS
DBCS can be used only in the following:

� G and M constants
 � Identifiers
 � Comments

G literals can start and end with a DBCS quote followed by either a DBCS G or an
SBCS G.

 Stream I/O
Stream I/O is supported with the following restrictions:

� For PUT/GET DATA, the following restrictions apply:

– DEFINED is not supported if the DEFINED variable is BIT or GRAPHIC or
has a POSITION attribute.

– DEFINED is not supported if its base variable is an array slice or an array
with a different number of dimensions than the defined variable.

 Chapter 3. Compile-time considerations 9

 Record I/O
Record I/O is supported with the following exceptions:

� EVENT clauses on READ/WRITE are not supported.

� The UNLOCK statement is not supported.

� The BACKWARDS file attribute is not supported.

� Alternate index paths are not supported.

� Regional(2) and Regional(3) files are not supported.

� TRANSIENT files are not supported

� The EXCLUSIVE file attribute is not supported.

� The following options of the ENVIRONMENT attribute are not supported:
 ADDBUFF ASCII BUFFERS(n) BUFND BUFNI BUFOFF INDEXAREA(n)
LEAVE
 NCP(n) NOWRITE REREAD REUSE SIS SKIP TOTAL TP({MIR}) TRKOFL

 Built-in functions
Built-in functions are supported with the following exceptions/restrictions:

� The PLITEST built-in function is not supported.

� Pseudovariables are not supported in:

– The STRING options of PUT statements

� Pseudovariables in DO loops are restricted to:

 – IMAG
 – REAL
 – SUBSTR
 – UNSPEC

� The POLY built-in function has the following restrictions:

– The first argument must be REAL FLOAT.
– The second argument must be scalar.

� The COMPLEX pseudovariable is not supported.

 Batch compilations
Compilation is not performed in PROCESS-delimited chunks, and this difference
has the following consequences:

� Options on later sets of PROCESS statements are ignored
� One TEXT deck or .o is produced
� One listing file with one set of messages is produced
� External variables with the same name must match

The following example demonstrates a batch compilation. In this case, the
mismatches in b and x would be flagged.

10 Migration Guide

 +process opt(�);

 a: proc;
dcl b ext entry(1,2 char(2), 2 char(2));

 dcl
1 x ext,
2 x1a char(2),
2 x1b char(2);

 call b(x);
 end;

 +process opt(2);

 b: proc(p);
dcl p pointer;

 dcl
1 x ext,
2 x1a bit(16),
2 x1b bit(16);

 end;

Miscellaneous unsupported elements
The following miscellaneous elements are not supported:

� NOMAP, NOMAPIN, and NOMAPOUT are accepted but ignored, even if
parmlist/arguments are given.

Storage report changes
The PLIXHD variable is no longer used as the heading in storage reports. The
identifier PLIXHD is no longer reserved; you can declare it and use it as you would
declare and use any other variable.

 Compiler messages
The messages issued by the Enterprise PL/I compiler are completely different from
messages issued by previous PL/I compilers. For detailed descriptions of
messages produced by Enterprise PL/I, see Enterprise PL/I Compile-Time
Messages and Codes.

Messages that PL/I issues for errors in the PLIXOPT string
The PLIXOPT variable is a varying-length character string that contains run-time
options you can specify at compile time. The messages that the compiler produces
to diagnose errors in these options have changed. In most cases, the PL/I
messages now list an associated Language Environment message that you should
read for more information about the error.

PL/I parses the PLIXOPT string and produces the Language Environment
CEEUOPT CSECT. If you explicitly include CEEUOPT in your recompiled
application ahead of the compiler-generated CEEUOPT CSECT, the explicitly

 Chapter 3. Compile-time considerations 11

included CEEUOPT CSECT overrides the one generated by the compiler for the
options specified in the PLIXOPT string.

12 Migration Guide

 Chapter 4. Link-edit considerations

This chapter describes factors you must consider when you link-edit an object
module produced by Enterprise PL/I.

Important: If you compile with the option RENT or with the option
LIMITS(EXTNAME(n)) with n > 8, then you must either use the prelinker or
use the binder and place your binder output in a PDSE. For more
information about linking, see the chapter titled 'Link-editing and Running'
in the Enterprise PL/I Programming Guide.

Using FETCH in your routines
You can FETCH Enterprise PL/I routines, OS/390 C DLLs, and Assembler routines
except for the following restrictions:

� OPTIONS(FETCHABLE) must be specified on the PROCEDURE statement for
the entry point of the fetched routine.

� Unless the NORENT option has been specified, the ENTRY declaration in the
routine that FETCHes must not specify OPTIONS(COBOL) or
OPTIONS(ASM)—these should be specified only for COBOL or ASM routines
not linked as DLLs.

� OPTIONS(FETCHABLE) must be specified on the PROCEDURE statement for
the entry point of the FETCHABLE routine or the procedure must be compiled
with the DLLINIT option.

� Unless the NORENT option has been specified, a PROCEDURE specifiying
OPTIONS(FETCHABLE) must be linked as a DLL.

� RMODE(24) routines cannot be FETCHed.

For a detailed description of these restrictions, see the chapter titled 'Link-editing
and Running' in the Enterprise PL/IProgramming Guide.

Using PLICALLA or PLICALLB entry
For Enterprise PL/I programs that use PLICALLA or PLICALLB as the main entry
point, link-edit the object modules with the SIBMCAL2 dataset in front of the
SCEELKED dataset. See “PLICALLA considerations” on page 15 and “PLICALLB
considerations” on page 16 for details.

ENTRY CEESTART requirement
If a Enterprise PL/I or PL/I for MVS & VM main procedure is link-edited with object
modules produced by other language compilers or by assembler, and is the first
module to receive control, the user must ensure that the entry point of the resulting
executable program is resolved to the external symbol CEESTART. This happens
automatically if the Enterprise PL/I or PL/I for MVS & VM main procedure is first in
the input to the linkage editor. Run-time errors occur if the executable program
entry point is forced to some other symbol by use of the linkage editor ENTRY
control statement.

 Copyright IBM Corp. 1998, 2001 13

Restrictions on using the binder
You can use the binder in place of the prelinker and linkage-editor, with the
following exceptions:

� CICS Prior to CICS 1.3, PDSEs are not supported. From CICS Transaction
Server 1.3 onwards, there is support in CICS for PDSEs. Please refer to the
CICS Transaction Server for OS/390 Release Guide, GC34-5701, where there
are several references to PDSEs, and a list of prerequisite APAR fixes.

� MTF MTF does not support PDSEs. If your program targets MTF, you cannot
use the binder.

14 Migration Guide

 Chapter 5. Run-Time Considerations

Before you migrate to Language Environment or Enterprise PL/I, you should read
this chapter. It discusses the functional differences between previous PL/I
compilers and Enterprise PL/I and its run-time environment Language Environment.
These differences should be considered before you install Language Environment
or Enterprise PL/I. Other chapters in this book discuss differences you must
consider during and after installation.

Factors to consider before migrating to Enterprise PL/I are:

� There is no support for multitasking.

� There is no support for IBMBSIR or IBMBHKS.

Differences in PLICALLA and PLICALLB Support
The interfaces in the following sections are not recommended for use in Enterprise
PL/I. They are supported only for compatibility reasons.

 PLICALLA considerations
Language Environment provides support for Enterprise PL/I applications that use
the PLICALLA entry point. It also provides support for recompiled OS PL/I and PL/I
for MVS & VM applications that want to continue to use PLICALLA as the primary
entry point.

When you recompile your OS PL/I or PL/I for MVS & VM program with Enterprise
PL/I, there is no need to INCLUDE Language Environment-provided PLISTART
CSECT when you link your main load module. You just need to make sure the
SIBMCAL2 dataset is concatenated in front of the SCEELKED dataset. If you don't
do this, the linkage editor or loader issues an error message for an unresolved
ENTRY PLICALLA statement.

You can also use PLICALLA as the primary entry point of a FETCHed/CALLed
main load module; however, the calling routine must pass only user arguments
which are passed to a subroutine. If run-time options are passed, they are treated
as user arguments.

If you develop a new application in Enterprise PL/I and you want the main
procedure to receive user arguments like a subroutine, do one of the following:

� Receive control directly from IMS by:

– Using CEESTART as the primary entry point of the load module.

– Specifying the SYSTEM(IMS) compile-time option.

� Receive control from an assembler program or a procedure using a FETCH or
CALL statement by:

– Using CEESTART as the primary entry point of the load module.

– Specifying the NOEXECOPS option and the SYSTEM(MVS) compile-time
option.

 Copyright IBM Corp. 1998, 2001 15

Language Environment support of PLICALLA is not available in the following
environments:

 CICS environment
 Preinitialized environment

Nested enclave environment.

 Passing parameters
PLICALLA can be used under IMS, but recall that if a MAIN procedure is
recompiled with Enterprise PL/I using SYSTEM(IMS), all parameters must be
POINTERs.

Table 4 provides the expected argument passing convention (either BYADDR or
BYVALUE) when the main procedure of your OS PL/I PLICALLA application is
recompiled with Enterprise PL/I. Note that SYSTEM(CICS) is not listed in this table
since PLICALLA cannot be used under CICS with Enterprise PL/I

Table 4. Parameter passing for the main procedure compiled with Enterprise PL/I

System environment

Invoked from IMS1

Invoked from
assembler
program2

Invoked by PL/I
FETCH/CALL
Statement2

SYSTEM(MVS) BYADDR BYADDR BYADDR

SYSTEM(IMS) BYVALUE3 Not supported Not supported

SYSTEM(TSO) BYADDR BYADDR BYADDR

1LANG=PL/I must be specified and it passes indirect by reference.
2It must have already passed indirect by reference or by value.
3PL/I library will convert the argument list to direct by value.

 PLICALLB considerations
Language Environment provides support for recompiled OS PL/I or PL/I for MVS &
VM PLICALLB applications that continue to use PLICALLB as the primary entry
point. The following list shows the PLICALLB parameter mapping for Language
Environment:

� Address of argument list (argument must either point to an address or be zero)

� Address of the length of ISA storage mapped to STACK(init_size)

� Address of ISA storage used as the initial STACK segment

� Address of the options word in which the run-time options for a program are
specified. These options are: RPTSTG, TRAP,
HEAP(,,KEEP|FREE)|(,,ANY|BELOW). The hexadecimal value for each option
is defined as follows in the assembler program:

OPTIONS DC AL1(RPTSTG+TRAP,FREEHEAP+ANYHEAP,�,�)
+
RPTSTG EQU X'8�'
RPTSTGOFF EQU X'4�'
TRAP EQU X'2�'
TRAPOFF EQU X'1�'
+
KEEPHEAP EQU X'2�'
FREEHEAP EQU X'1�'
ANYHEAP EQU X'�8'
BELHEAP EQU X'�4'

16 Migration Guide

� Address of HEAP storage length for a program is mapped to HEAP(init_size)

� Address of HEAP storage is used as the initial HEAP segment

� Address of HEAP increment for a program is mapped to HEAP(,incr_size)

� Address of ISA increment for a program is mapped to STACK(,incr_size)
(optional) is mapped to NONIPTSTACK(,incr_size)

When the above argument list is passed in via the PLICALLB entry point, the
argument in the list must either point to an address or be zero. The hight-order bit
of an argument must be ON to indicate the end of the argument list. R1 must
contain the address of the argument list.

With Language Environment, the run-time options passed via the PLICALLB entry
point are processed as options specified on invocation of the application and have
a higher precedence than CEEUOPT or PLIXOPT options. The assembler user
exit cannot be used to alter the run-time options passed through the PLICALLB
invocation.

To summarize, the run-time options passed in have the following precedence (from
highest to lowest) among Language Environment option specification methods:

1. Options specified via the PLICALLB entry point
2. Options specified in the PLIXOPT string or in CEEUOPT

The user arguments passed to the PL/I main routine have the following precedence
(from highest to lowest):

1. Output from CXIT_PARM or AUE_PARM of the assembler user exit
2. User arguments passed in via the PLICALLB entry

Note: The input to CXIT_PARM or AUE_PARM of the assembler user exit is the
first argument in the PLICALLB parameter list; that is, the address of a
vector of user argument addresses.

Language Environment encourages the use of above-16M-line storage. For
compatibility with OS PL/I, Language Environment maps the user-supplied ISA and
HEAP storage to STACK and HEAP. With this mapping, however, Language
Environment still needs to issue some GETMAINs. Since user-supplied ISA/HEAP
storage is usually below the 16M line, below-16M-line storage can be quickly
consumed under Language Environment. How Language Environment manages
storage is described in the OS/390 Language Environment Programming Guide.

Language Environment manages storage differently than OS PL/I. It divides
storage into more categories than the OS PL/I-supported ISA and HEAP.

Language Environment allocates below-16M-line storage using the init_sz24 and
incr_sz24 suboptions specified in the HEAP option.

When you develop new applications in Enterprise PL/I and want to pass both
run-time options and arguments to a PL/I main procedure, especially to provide
user-supplied stack and heap storage from an assembler program, take advantage
of Language Environment's preinitialization support as described in OS/390
Language Environment Programming Guide.

Language Environment support of PLICALLB is not available in the following
environments:

 Chapter 5. Run-Time Considerations 17

 CICS
 IMS
 Preinitialized environment

Nested enclave environment

 Passing parameters
OPTIONS(BYADDR) passes the argument indirectly by reference and is the usual
argument-passing convention. Enterprise PL/I also provides OPTIONS(BYVALUE)
which passes arguments directly by value.

You must use the BYADDR option when you want to pass parameters using
PLICALLB. PLICALLB is invoked from assembler which passes the argument list
indirectly by reference.

Table 5 provides the expected argument passing convention (either BYADDR or
BYVALUE) when the main procedure of your OS PL/I PLICALLB application is
recompiled with Enterprise PL/I:

Table 5. Parameter passing for the main procedure compiled with Enterprise PL/I

System environment Invoked from assembler program1

SYSTEM(MVS) BYADDR

SYSTEM(CMS|CMSTPL) BYADDR

SYSTEM(CICS) Not supported

SYSTEM(IMS) Not supported

SYSTEM(TSO) BYADDR

1It passed the argument list required by the PLICALLB entry.

Differences in preinitialization support
The PL/I preinitialized program interface is not supported for Enterprise PL/I
applications. Use the Language Environment preinitialization service as described
in the OS/390 Language Environment Programming Reference.

Differences in DATE/TIME built-in functions
The DATETIME and TIME built-in functions now return the number of milliseconds
in all environments. The syntax and description of these built-in functions are in the
Enterprise PL/I for OS/390 PL/I Language Reference.

Differences in user return codes
Enterprise PL/I and Language Environment support a FIXED BIN(31) four-byte user
return code value for PLIRETC, PLIRETV, and OPTIONS(RETCODE). This
support removes the old restriction that the maximum value had to be <= 999.

The following table shows how PL/I user return code is supported:

18 Migration Guide

For PLIRETC, Enterprise PL/I and relinked OS PL/I load modules can set a 4-byte
user return code value.

For PLIRETV and RETCODE, Enterprise PL/I load modules can receive a 4-byte
user return code value.

Under Language Environment, the PL/I user return code is always reset to zero
upon return from the PLISRTx invocation. This is not the case with OS PL/I
run-time.

Table 6. Return code behavior under Language Environment

Function

OS PL/I
load module

OS PL/I object module
linked with
Language Environment

Enterprise PL/I
load module

PLIRETC
built-in function

2-byte value with
maximum <= 999

4-byte value with
maximum < 2G

4-byte value with
maximum < 2G

PLIRETV
built-in function

2-byte value Lower 2 bytes of a
4-byte value

4-byte value

RETCODE option Lower 2 bytes of R15 Lower 2 bytes of R15 2-byte value

Differences in Condition Handling
PL/I condition handling semantics remain supported under Language Environment;
however, the timing of issuing the run-time message for an ERROR condition with
respect to the ERROR ON-unit is different in the following way:

� The run-time message for an ERROR condition is issued only if there is no
ERROR ON-unit established, or if the ERROR ON-unit does not recover from
the condition by using a GOTO out of the ERROR ON-unit. Thus you can use
a GOTO out of the ERROR ON-unit to avoid a message for a PL/I ERROR
condition.

For other PL/I conditions whose implicit action includes printing a message and
raising the ERROR condition, the message is issued before control is given to an
established ERROR ON-unit.

Table 7 shows when the run-time message for an ERROR condition is issued
under OS PL/I with respect to the ERROR ON-unit.

Table 7. OS PL/I Version 2 Release 3 ERROR ON-unit and message for an ERROR
condition

Condition

No ON-units

ERROR ON-unit No
GOTO

ERROR ON-unit GOTO

ERROR condition raised1 Message Message prior to
ON-unit

Message prior to ON-unit

ZERODIVIDE condition
raised2

Message Message prior to
ON-unit

Message prior to ON-unit

Notes:

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR condition
is raised.

 Chapter 5. Run-Time Considerations 19

Table 8 shows when the run-time message for an ERROR condition is issued
under Language Environment with respect to the ERROR ON-unit.

The SNAP traceback message produced by ON ERROR SNAP continues to be
issued before the ERROR ON-unit receives control. The SNAP traceback message
is not identical to the regular ERROR message.

Some program return code modifiers have changed under Language Environment,
depending upon what compiler was used. The behaviors are:

� OS PL/I V2R3:

A return code of 2000 is added for the case where the ERROR condition is
raised and the program terminates without returning from an ERROR or FINISH
ON-unit.

� Enterprise PL/I and PL/I for MVS & VM:

A return code of 3000 is added for severity 3 conditions (severe
error—abnormal termination).

Most PL/I conditions are severity 3, with the following severity 1 exceptions:
ENDPAGE, FINISH, NAME, PENDING, STRINGRANGE, STRINGSIZE,
UNDERFLOW, ATTENTION signaled, CONDITION signaled.

Note: Above information is useful when using the Language Environment
ERRCOUNT run-time option.

If your OS PL/I application used to force an abend for an unhandled condition
under OS PL/I run-time using OS PL/I assembler user exit IBMBXITA or abend exit
IBMBEER, use the following ways to force an abend under Language Environment:

� Run your application with the Language Environment ABTERMENC(ABEND)
option. You cannot specify your own abend code via the run-time option.

� Use Language Environment assembler user exit CEEBXITA to force an abend
with your own abend code.

For ZERODIVIDE, OVERFLOW, and SIZE, the ERROR condition is raised if the
condition goes unhandled.

The FOFL condition is not raised for FIXED BIN. It is raised only for FIXED DEC
and decimal PICTURE.

Table 8. Language Environment ERROR ON-unit and message for an ERROR condition

Condition

No ON-units

ERROR ON-unit No
GOTO

ERROR ON-unit GOTO

ERROR condition raised1 Message Message after
ON-unit

No message

ZERODIVIDE condition
raised2

Message Message prior to
ON-unit

Message prior to ON-unit

Notes:

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR condition
is raised.

20 Migration Guide

Language Environment provides limited support for OS PL/I IBMBXITA and
IBMBEER. See “Considerations for using assembler user exits” on page 5 for
details.

An UNHANDLED condition of severity 2 or higher now produces an abend U4039
and optionally a system dump if SYSUDUMP or SYSABEND ddname is present. If
ABTERMENC(RETCODE) is in effect, your application continues the termination
with an abend code. If you don't want to see the U4039 abend, Language
Environment provides you the facilities to suppress it.

See “Abnormal Termination Exit” in OS/390 Language Environment Customization
for ways to suppress or change the U4039 abend.

Differences in run-time messages
The format and content of run-time messages are different. If you have
applications that analyze run-time messages, you must change the applications to
allow for the differences. The differences include:

� The message number in the message prefix is four digits instead of three digits
in the form IBMnnnnx, where nnnn represents the message number and x
represents the severity of the message.

� The message severity in the message prefix can be I, W, E, S, or C.

� The message text of some messages has been enhanced.

Details are provided in OS/390 Language Environment Debugging Guide and
Run-Time Messages.

Under Language Environment, run-time messages go to the MSGFILE destination
specified in the run-time option MSGFILE. The default for MSGFILE destination is
SYSOUT. The user output still goes to SYSPRINT. MSGFILE(SYSPRINT) is not
supported under Enterprise PL/I. For more information about the MSGFILE option,
refer to OS/390 Language Environment Programming Guide.

Under Language Environment, run-time messages give offset values that are
relative to the start of the external procedure, rather than relative to the start of the
block that contains the statement. You can use these offsets to help you find the
statement that is in error. To do this, match the offset provided in the message
with the offset given in the pseudo-assembler listing that the compiler produces
when you specify the LIST compile-time option.

Differences in PLIDUMP
PLIDUMP now produces a Language Environment-style dump. The way you use
PLIDUMP and the dump output is different. The following list contains the
differences in the way you use PLIDUMP and the output produced. Compile unit
refers to the primary entry point of the external procedure and Compile unit name
refers to the name of the external procedure.

� The ddname of the dump output file can be CEEDUMP, PLIDUMP, or
PL1DUMP. If you do not define one of these files, Language Environment
creates a default CEEDUMP file to contain the dump output. The LRECL of
the dump output file must be at least 133 bytes to prevent dump records
wrapping, not the 121 bytes required by OS PL/I. If you write the dump output

 Chapter 5. Run-Time Considerations 21

to the SYSOUT file, make sure you change the default LRECL size of 121 to
133 to prevent wrapping. Use LRECL of 137 for variable-length files.

� When you use the hexadecimal (H) option of PLIDUMP, you must specify the
ddname CEESNAP; otherwise, no SNAP dump will be produced.

When you specify the hexadecimal (H) option under OS/390, the output from
SNAP includes all system control program information (SDATA=ALL). OS PL/I
provides only partial information (SDATA=CB, Q, and TRT).

� The dump output contains information related to other languages (for example,
C/C++ or COBOL).

� The identifying character string is limited to 60 bytes rather than the 90 bytes
OS PL/I supported.

� The traceback section lists the compile-unit name associated with each entry
point name. When the entry point is a secondary entry point, the primary entry
point name associated with the actual entry point is not listed.

The traceback section also contains offsets relative to the address of the
compile unit, as well as offsets relative to the address of the real entry point.

� Run-time messages are in a separate section; they are no longer part of the
traceback section.

� When you specify the BLOCK (B) option of PLIDUMP, the condition handler
save areas appear in the block section of the dump. If you do not specify the
BLOCK option of PLIDUMP, the condition handler save areas do not appear in
the dump.

� If the program was compiled with the TEST compile-time option, the BEGIN
blocks that are ON-units are identified as _ON_Begin_line_Blk_number while
other BEGIN blocks are identified as _Begin_line_Blk_number where line is the
line number where the Begin block begins and number is block for the
begin-block.

� PL/I library routines are identified by name in the dump.

� Assembler routines that conform to the rules for mimicking PL/I routines are
identified by their CSECT names in the dump output.

� PLIDUMP now conforms to National Language Support standards.

� PLIDUMP can supply information across multiple Language Environment
enclaves. For example, if an application running in one enclave FETCHes a
main procedure (an action that creates another enclave), PLIDUMP contains
information about both procedures.

Differences in run-time options
Language Environment run-time options replace OS PL/I run-time options. Most
OS PL/I run-time options have an equivalent Language Environment run-time
option that provides the same function. This section describes differences in the
use of run-time options.

Pre-Language Environment storage was initialized to zero. By default Language
Environment does not do this and it can be a problem for programs with
uninitialized variables. One way to handle this situation is to use the run-time
option STORAGE by using the third parameter to initialize all storage to zero. Note

22 Migration Guide

that the use of this method has serious performance costs, and modifying the
program so that all variables are initialized is the preferred solution.

You should adapt your applications to allow for the following differences:

� The Language Environment ABTERMENC option controls which type of
return/abend code your application receives at abnormal termination.
ABTERMINC(RETCODE) allows your application to receive a run-time return
code, which is equivalent to the way OS PL/I worked.

� The Language Environment ERRCOUNT option limits the number of errors that
are handled at run-time. ERRCOUNT(0) specifies that there is no limit, which
is equivalent to the way OS PL/I worked.

� The Language Environment DEPTHCONDLMT option limits the extent to which
conditions can be nested. To maintain compatibility, specify
DEPTHCONDLMT(0), which means there is an unlimited depth.

� The OS PL/I COUNT option is ignored.

� The OS PL/I FLOW option is ignored.

� The OS PL/I HEAP option is always in effect. This means that when you
allocate storage for BASED and CONTROLLED variables, the storage always
comes from HEAP storage. The storage does not come from a PL/I Initial
Storage Area (ISA). HEAP(0) is not supported and, if used, is ignored.

� The Language Environment NATLANG option replaces the OS PL/I
LANGUAGE option.

� The Language Environment RPTSTG option replaces the OS PL/I REPORT
option.

� The Language Environment TRAP option replaces both OS PL/I SPIE and
STAE options. The following table shows how the OS PL/I SPIE and STAE
options map to Language Environment's TRAP option:

Note: Applications performing their own condition management often conflict
with Language Environment condition management. See your OS/390
Language Environment Programming Guide for more information on
Language Environment condition handling.

� The Language Environment STACK option replaces both OS PL/I ISASIZE and
ISAINC options. You do not need to change source code that contains
ISASIZE and ISAINC. In addition, object modules and/or load modules
containing the PLIXOPT string will run under Language Environment with the
ISASIZE and ISAINC honored as before.

Use STACK(,,ANY) for your Enterprise PL/I application. Your application must
run in AMODE(31) to use STACK(,,ANY).

Under CICS, ALL31(ON) and STACK(,,ANY) are the defaults.

Table 9. Mapping of SPIE and STAE options to the TRAP option

OS PL/I

Language
Environment

Action

SPIE | NOSPIE
STAE | NOSTAE

TRAP(ON,SPIE)
TRAP(OFF)

If either SPIE or STAE is specified or defaulted in input,
TRAP is set to TRAP(ON,SPIE). If both NOSPIE and
NOSTAE are specified, TRAP is set to TRAP(OFF).
TRAP(ON,SPIE) is the recommended setting.

 Chapter 5. Run-Time Considerations 23

� The Language Environment Environment XUFLOW option determines if the
UNDERFLOW condition is raised when underflow occurs. XUFLOW(AUTO)
preserves PL/I semantics with regard to raising the UNDERFLOW condition.

For more information about run-time options, see the OS/390 Language
Environment Programming Reference.

For OS PL/I applications, the options specified in the PLIXOPT string are
processed as the application-specific options. Do not mix PLIXOPT and
CEEUOPT.

Differences in storage report
The format, contents, and destination of the run-time storage report have changed.
Language Environment provides storage information equivalent to OS PL/I. The
details of storage report is described in OS/390 Language Environment
Programming Reference.

The PLIXHD declaration is no longer used to provide the heading for the run-time
storage report. Instead, use Language Environment's Callable Service, CEE3RPH,
to specify the heading.

Differences in interlanguage communication support
Recompilation of PL/I modules in ILC applications containing OS PL/I or PL/I for
MVS & VM with Enterprise PL/I is recommended.

ILC between Enterprise PL/I and the following languages is not supported:

� Fortran (prior to Language Environment Release 5)
 � OS/VS COBOL
� VS COBOL II Version 1 Release 2 or earlier releases

For more information, see Language Environment for OS/390 & VM Writing
Interlanguage Communication Applications.

OPTIONS(COBOL) is treated like OPTIONS(ASM). There is no remapping of
parameters via MAPIN or MAPOUT. This is both a compile-time difference and a
run-time difference, but it will become apparent only at run-time.

The behavior of certain applications that use ILC might be different. For example:

� Condition handling might behave differently. The major causes of differences
in condition handling are that the INTER option is now ignored, and that PL/I
condition handling facilities can deal with conditions occurring in non-PL/I
routines whether or not you specify INTER.

� Under OS PL/I, in applications that used ILC, the environment initialization and
termination of the involved languages, including PL/I, could occur multiple
times. With Language Environment, there is only one run-time environment,
and language-specific initialization and termination occurs only once. Changes
in behavior that you might see include opening and closing of files, releasing of
allocated storage, and invocation of established ON-units.

Note: If you have designed your own code to manage your run-time
environments, you should remove it as part of your migration efforts.

24 Migration Guide

This private code is incompatible with Language Environment and will
conflict with the run-time environment.

For a complete description of how ILC works in the Language Environment run-time
environment, see Language Environment for OS/390 & VM Writing Interlanguage
Communication Applications.

Differences in assembler support
With Enterprise PL/I, the object module contains the CSECT name CEESTART. It
also contains CEEMAIN if it has OPTIONS(MAIN) or CEEFMAIN if it has
OPTIONS(FETCHABLE). Enterprise PL/I no longer produces PLISTART and
PLIMAIN CSECTs. CEESTART, CEEMAIN, and CEEFMAIN are not supported as
a standard entry point and you cannot call them directly from an assembler
program. You can call CEESTART from an assembler program only when it is a
CSECT name of a Enterprise PL/I routine statically linked with an assembler
program. Therefore, any assembler program mimicking a OS PL/I main procedure
(calling PLISTART directly as a standard entry point), must continue to use
PLISTART under Language Environment.

With Language Environment, assembler programs that call a PL/I routine must
follow the calling conventions defined by Language Environment. For example,
Register 13 pointing to a save area, save areas properly back-chained, and the first
word of the save area being zero. For detailed information, see OS/390 Language
Environment Programming Guide.

If your OS PL/I main program is called by an assembler program and you want to
convert your assembler program to use Language Environment-conforming
assembler, you must recompile your OS PL/I program with Enterprise PL/I without
OPTIONS(MAIN). The called Enterprise PL/I program is treated as a subroutine
and runs under the same Language Environment enclave where the assembler
program is the main program and the called Enterprise PL/I program is a
subroutine.

Your Language Environment-conforming assembler main program must explicitly
include the Language Environment-Enterprise PL/I signature CSECT, CEESG011,
when calling a PL/I subroutine to ensure the Language Environment-PL/I-specific
run-time environment is initialized. There are three ways Language
Environment-conforming assembler routines can pass control to a Enterprise PL/I
subroutine:

1. Branch to a statically-linked Enterprise PL/I subroutine.

2. Use the Language Environment macro CEEFETCH to branch to a
separately-linked Enterprise PL/I subroutine.

3. Use assembler instructions such as LOAD and BALR to branch to a
separately-linked Enterprise PL/I subroutine.

When you use method 1 or 2 with Enterprise PL/I, you don't need to include
CEESG011 with your assembler program. If your assembler program uses
instructions as described in method 3, you must always include CEESG011 with
your assembler program.

 Chapter 5. Run-Time Considerations 25

Condition handling of the LINK from assembler is now clearly defined. For detailed
information, see OS/390 Language Environment Programming Guide and
Enterprise PL/I Programming Guide.

Differences in language element behavior
There are also some language elements that can cause your program to run
differently under Enterprise PL/I than it does under PL/I for MVS & VM due to
differences in the hardware or in the implementation of the language by the
compiler. Each of the following items is described in terms of its Enterprise PL/I
behavior.

FIXED BIN(p) maps to one byte if p <= 7
If you have any variables declared as FIXED BIN with a precision of 7 or less,
they occupy one byte of storage under Enterprise PL/I instead of two as under
PL/I for MVS & VM and earlier. If the variable is part of a structure, this usually
changes how the structure is mapped, and that could affect how your program
runs. For example, if the structure were read in from a file, fewer bytes would
be read in under Enterprise PL/I than under PL/I for MVS & VM or earlier PL/I
release.

To avoid this difference, you could change the precision of the variable to a
value between 8 and 15 (inclusive).

INITIAL attribute for AREAs is ignored
The Enterprise PL/I compiler ignores the INITIAL attribute for AREAs, and you
should convert any INITIAL clauses for AREAs into assignment statements.

For example, in the following code fragment, the elements of the array are not
initialized to a1, a2, a3, and a4:

dcl (a1,a2,a3,a4) area;
dcl a(4) area init(a1, a2, a3, a4);

However, you can rewrite the code as follows so that the array is initialized as
desired:

dcl (a1,a2,a3,a4) area;
dcl a(4) area;

a(1) = a1;
a(2) = a2;
a(3) = a3;
a(4) = a4;

ADD, DIVIDE, and MULTIPLY do not return scaled FIXED BIN
Under the RULES(IBM) compile-time option, which is the default, variables can
be declared as FIXED BIN with a nonzero scale factor. Infix, prefix, and
comparison operations are performed on scaled FIXED BIN using the same
semantics as the old compilers.

However, when the ADD, DIVIDE, or MULTIPLY built-in functions have
arguments with nonzero factors or specify a result with a nonzero scale factor,
the Enterprise PL/I compiler evaluates the built-in function as FIXED DEC
rather than as FIXED BIN as the older compilers did.

For example, Enterprise PL/I compiler would evaluate the DIVIDE built-in
function in the assignment statement below as a FIXED DEC expression:

26 Migration Guide

dcl (i,j) fixed bin(15);
dcl x fixed bin(15,2);

...
x = divide(i,j,15,2);

Differences in Descriptor Format
The default descriptor format in Enterprise PL/I is different from previous versions
of PL/I. The CMPAT(V2) and CMPAT(V1) compiler options are available to cause
Enterprise PL/I to use the previous descriptor format. This is particularly useful, for
example, in applications where DB2 passes strings to Enterprise PL/I, or where
Assembler programs pass descriptors in the previous format, or where Assembler
programs read PL/I descriptors and expect the old format.

Differences in AMODE(24) Support
 AMODE(31) and RMODE(ANY) are the default settings for the Enterprise PL/I
application. Amode(24) applications are only supported for compatibility reasons. To
use the AMODE(24) feature, the following is required:

1. The application program has to be compiled with the PL/I compiler option
NORENT and run with the Language Environment option ALL31(OFF).

2. The application program needs to be linked with the SIBMAM24 dataset
concatenated in front of the SCEELKED dataset during the link step. The
support is only available through ++APAR PQ52718.

 Chapter 5. Run-Time Considerations 27

Chapter 6. Tuning your Enterprise PL/I program

After you migrate to Language Environment, you should retune your applications to
maximize the performance. When you retune an application, it is not always
possible to maximize CPU and storage at the same time. Often you will find that,
in order to obtain better CPU, you need to use more storage, or vice versa. This
chapter provides general tips to help you to retune your applications under
Language Environment.

For more information on tools you can use to improve performance for your
applications, see OS/390 Language Environment Customization or OS/390 V2R10
Language Environment Customization, and Enterprise PL/I for z/OS and OS/390
Programming Guide.

Improving CPU utilization
The following discussion shows ways to help you obtain better CPU utilization:

� Reduce the number of GETMAINs and FREEMAINs issued by Language
Environment.

Use the Language Environment RPTSTG(ON) option to produce the storage
report. Specify the reported storage amount in the corresponding Language
Environment storage run-time options.

� Reduce the number of LOADs and DELETEs issued by Language
Environment.

Put the commonly used Language Environment library routines in (E)LPA. The
following lists the recommended candidates for Enterprise PL/I:

 – CEEBINIT (LPA)
 – CEEPLPKA (ELPA)
 – CEEEV011 (ELPA)

See OS/390 Language Environment Customization for a complete list of library
routines that can be put in (E)LPA.

� Avoid AMODE switching between library routines.

Use AMODE(31) for your application, if possible, so you can specify Language
Environment ALL31(ON) option. If ALL31(ON) is in effect, there is no AMODE
switching among library routines.

� Excessive raising of conditions will degrade performance.

� Use DFSMS-provided system-determined BLKSIZE.

On OS/390, use BLKSIZE(0) for an output file that can be blocked. DFSMS
determines the optimal block size for you which can improve the file
performance.

� Use Language Environment Library Routine Retention facility (LRR).

You can get a better CPU performance if you use LRR. When LRR is used,
Language Environment keeps certain Language Environment resources in
storage when an application ends. Subsequent invocations of programs that
use LRR is much faster because the Language Environment resources left in
storage are reused.

28  Copyright IBM Corp. 1998, 2001

For example, you can use LRR for your IMS/DC environment to improve
performance.

Note that because LRR leaves LE resources in the storage for a long period of
time, you must assess your storage availability to accommodate the situation.

Improving storage utilization
The following discussion helps you to obtain better storage utilization:

� Use Language Environment option HEAP(,,ANY) option, if possible.

For Enterprise PL/I, Language Environment will allocate the heap storage
above the 16M line if the following is true:

– The requestor is in AMODE(31)
– HEAP(,,ANY) is in effect
– The main program is in AMODE(31)

� Use Language Environment STACK(,,ANY) option, if possible.

Your application must be in AMODE(31). Language Environment allocates the
stack storage above the 16M line when your application is recompiled with
Enterprise PL/I and linked with Language Environment.

� Reduce the IBM-supplied default values in Language Environment storage
options.

If you use a smaller value, Language Environment will allocate less storage
each time, but it could result in more GETMAINs and FREEMAINs being
issued.

� Put commonly used Language Environment library modules in (E)LPA.

The library routines in (E)LPA do not occupy storage in your application region,
so your application has more storage to use. See the recommended library
routines for (E)LPA in “Improving CPU utilization” on page 28.

Improving performance under IMS
The following discussion helps you to obtain better performance under IMS:

Use Language Environment Library Routine Retention (LRR) facility to reduce the
number of LOADs/DELETEs and GETMAINs/FREEMAINs issued by Language
Environment for each transaction.

Preload commonly used Language Environment library modules and frequently
used top-level applications.

 Chapter 6. Tuning your Enterprise PL/I program 29

 Chapter 7. Subsystem considerations

This chapter discusses subsystem-specific considerations that you need to know
when you migrate your applications running under CICS, IMS, and DB2.

 CICS considerations
The CICS Storage Protect facility was introduced under CICS 3.3. This provides
more data integrity and security for the application program and especially for the
entire CICS region. Because of the new feature, you might discover that some of
the successfully running OS PL/I applications start to fail with ASRA(0C4) abend
and the CICS message DFHSR0622.

If the above problem occurs in your Enterprise PL/I application program, set the
CICS system initialization parameter RENTPGM=NOPROTECT. This sets the
protection of the user program in user key. The default for RENTPGM is
PROTECT.

If PUT statements are used in your Enterprise PL/I CICS application, especially the
PUT DATA statement, it might trigger the above error.

Remember also that in CICS programs these PUT statements are intended for
debugging purposes only. They have a negative impact on performance, and we
do recommend that you don't use them in production programs.

If you mix old and new object code under CICS, you must adhere to all the rules
and restrictions described earlier in this book.

Updating CICS System Definition (CSD) file
When you bring up a CICS region with Language Environment, you must ensure
the module names listed in Language Environment CEECCSD are defined in the
CSD. You can locate CEECCSD in SCEESAMP. If you use CICS Version 4
autoinstall facility, you do not need to define Language Environment modules
manually in the CSD.

In order to run a Enterprise PL/I CICS application, you need to define the
Enterprise PL/I member event handler CEEEV011 in the CICS CSD definition table:

DEFINE PROGRAM(CEEEV�11) GROUP(CEE) LANGUAGE(ASSEMBLER)

 Macro-level interface
The CICS macro-level interface is not supported.

SYSTEM(CICS) compile-time option
The SYSTEM(CICS) option must be used when you compile your CICS programs.

30  Copyright IBM Corp. 1998, 2001

Linking Enterprise PL/I applications under CICS
You are generally no longer required to take special actions when you link a
Enterprise PL/I object module under CICS. However, if you did not specify
OPTIONS(FETCHABLE) on a PROCEDURE statement for a routine that is to be
FETCHed, you must code the linkage editor ENTRY statement so that it nominates
the actual entry point.

Also note that prior to CICS 1.3, PDSEs are not supported. From CICS
Transaction Server 1.3 onwards, there is support in CICS for PDSEs. Please refer
to the CICS Transaction Server for OS/390 Release Guide, GC34-5701, where
there are several references to PDSEs, and a list of prerequisite APAR fixes.

FETCHing a PL/I MAIN procedure
CICS does not support PL/I FETCHing in a PL/I MAIN procedure.

 Run-time output
Run-time output is now transmitted to the CICS transient data queue CESE.
Language Environment ignores the MSGFILE option under CICS. Figure 1 shows
format of the output data queue.

┌────┬─────────┬───────────┬──┬───────────────┬──┬──────┐
│ │Terminal │Transaction│B │ DateTime │B │Data │
│ASA │ id │ id │ │ YYYYMMDDHHMMSS│ │ │
│ │ │ │ │ │ │ │
└────┴─────────┴───────────┴──┴───────────────┴──┴──────┘

Figure 1. CESE output data queue

In addition, the PL/I transient queues CPLI and CPLD are no longer used. As a
result, you do not need to specify entries for the CPLI and CPLD in the CICS
Destination Control Table (DCT).

Abend codes used by PL/I under CICS
The APLx abend codes that were issued under OS PL/I Version 2 are no longer
issued. Instead, Language Environment-defined abend codes are issued. For
more information about Language Environment abend codes, see OS/390
Language Environment Debugging Guide and Run-Time Messages.

 IMS considerations

Interfaces to IMS
Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces
from a PL/I routine. It also supports CEETDLI interface from a Enterprise PL/I
routine running under IMS/ESA Version 4.

Under Language Environment, CEETDLI is the recommended interface. CEETDLI
supports calls that use an Application Interface Block (AIB) or a Program
Communication Block (PCB). CEETDLI is available under IMS/ESA Version 4. For
more information about AIB and a complete description of the CEETDLI interface,
see IMS/ESA Version 4 Application Programming Guide.

 Chapter 7. Subsystem considerations 31

SYSTEM(IMS) compile-time option
The SYSTEM(IMS) option should be used when compiling all PL/I MAIN programs
invoked from IMS.

When you recompile your main procedure with Enterprise PL/I, the object module
assumes that the parameters are passed as BYVALUE. Language Environment
converts the parameters to the BYVALUE style for you, if necessary, so the
parameters are always passed correctly.

If the BYADDR attribute is specified or implied for the paremeters to an IMS MAIN
routine, when you compile your main procedure with Enterprise PL/I, you will
receive an error message and the compiler will apply the BYVALUE attribute
instead.

PLICALLA Support in IMS
The OS PL/I PLICALLA entry point is supported under Language Environment;
however, it is not a recommended interface for IMS. Instead, use the
SYSTEM(IMS) compile-time option and the CEESTART entry point.

Language Environment provides the same support for OS PL/I PLICALLA
applications; however, when you recompile your main load module with Enterprise
PL/I and want to continue to use PLICALLA, you must follow additional rules. See
“PLICALLA considerations” on page 15 for details.

PSB language options supported
Language Environment supports PL/I applications with the following PSBGEN
LANG options in the supported releases of IMS:

IMS/ESA Version 4
Table 10 shows support for PSB LANG options in IMS/ESA Version 4.

IMS/ESA Version 3 Re1ease 1
Table 11 shows support for PSB LANG options in IMS/ESA Version 3
Release 1.

Table 10. PSB LANG options for IMS/ESA Version 4 Release 1

SYSTEM option Entry point LANG=

IMS CEESTART PLI or other values except
PASCAL

IMS PLICALLA PLI

Omitted CEESTART Illegal

Omitted PLICALLA PLI

Table 11. PSB LANG options for IMS/ESA Version 3 Release 1

SYSTEM option Entry point LANG=

IMS CEESTART PLI

IMS PLICALLA PLI

Omitted CEESTART Illegal

Omitted PLICALLA PLI

32 Migration Guide

Assembler driving a PL/I transaction
If an assembler program is driving a transaction program written in PL/I, and
assuming the PSBGEN LANG= option remains unchanged, you must use the
SYSTEM(MVS) compile-time option when you recompile the PL/I main program
with Enterprise PL/I. In this case, no changes to the assembler program are
required.

Storage usage considerations
With IMS/ESA Version 3 Release 1, the parameters passed to the IMS interfaces
are no longer restricted to the area below the 16M line. The parameters will be
above the 16M line if you observe the following rules:

� If the parameters passed to IMS are in CONTROLLED or BASED storage,
specify the ANYWHERE suboption of the HEAP run-time option.

� If the parameters passed to IMS are in AUTOMATIC storage, specify the
ANYWHERE suboption of the STACK run-time option.

� If the parameters passed to IMS are in STATIC storage, link the load module
with the AMODE(31) attribute.

Coordinated condition handling under IMS
Language Environment and IMS condition handling are coordinated, which means
that if a program interrupt or abend occurs when you application is running in an
IMS environment, the Language Environment condition manager is informed
whether the problem occurred in your application or in IMS. If the problem occurs
in IMS, Language Environment, as well as any invoked HLL-specific condition
handler, percolates the condition back to IMS.

With Language Environment run-time option TRAP(ON), Language Environment
continues to support coordinated condition handling for the PLITDLI and ASMTDLI
interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or IMS/ESA Version 4, Language
Environment also supports the coordinated condition handling for CEETDLI, CTDLI
from a C routine, CBLTDLI from a COBOL program, AIBTDLI from a PL/I program,
and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of IMS,
or if a software condition of severity 2 or greater is raised outside of IMS, the
Language Environment condition manager takes normal condition handling actions
described in OS/390 Language Environment Programming Guide. In this case, in
order to give IMS a chance to do database rollback, you must do one of the
following:

� Resolve the error completely so that you application can continue.

� Issue a rollback call to IMS, and then terminate the application.

� Make sure that the application terminates abnormally by using the
ABTERMENC(ABEND) run-time option to transform all abnormal terminations
into system abends in order to cause IMS rollbacks.

� Make sure that the application terminates abnormally by providing a modified
assembler user exit (CEEBXITA) that transforms all abnormal terminations into
system abends in order to cause IMS rollbacks.

 Chapter 7. Subsystem considerations 33

The assembler user exit you provide should check the return code and reason
code or the CEEAUE_ABTERM bit, and requests an abend by setting the
CEEAUE_ABND flag to ON, if appropriate. See OS/390 Language
Environment Programming Guide for details.

Performance enhancement with Library Retention(LRR)
If you use LRR, you can get an improvement in performance. See “Improving CPU
utilization” on page 28 for details.

 DB2 considerations
If you write a user-defined function in PL/I, DB/2 passes some string-locator
descriptors to the PL/I procedure. These descriptors have a different format than
the format used by default under Enterprise PL/I.

In order for such a program to run correctly under Enterprise PL/I, you must
compile the program with the CMPAT(V2) or CMPAT(V1) option.

34 Migration Guide

 Appendix A. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

 IBM Corporation
 J74/G4

555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION AS IS˜ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those

 Copyright IBM Corp. 1998, 2001 35

Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

36 Migration Guide

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Intel is a registered trademark of Intel Corporation in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States and other countries.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and other countries.

Pentium is a registered trademark of Intel Corporation in the United States and
other countries.

Unicode is a trademark of the Unicode Consortium.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be the trademarks or service marks
of others.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

AIX
CICS
CICS/ESA
DB2
DFSMS
DFSORT
IBM
IMS
IMS/ESA

Language Environment
MVS
OpenEdition
OS/390
RACF
System/390
VisualAge
z/OS

 Appendix A. Notices 37

 Bibliography

Enterprise PL/I publications
Programming Guide, SC27-1457
Language Reference, SC27-1460
Messages and Codes, SC27-1461
Diagnosis Guide, GC27-1459
Compiler and Run-Time Migration Guide,
GC27-1458

PL/I for MVS & VM
Installation and Customization under MVS,
SC26-3119
Language Reference, SC26-3114
Compile-Time Messages and Codes, SC26-3229
Diagnosis Guide, SC26-3149
Migration Guide, SC26-3118
Programming Guide, SC26-3113
Reference Summary, SX26-3821

z/OS Language Environment
Concepts Guide, SA22-7567

Debugging Guide, GA22-7560

Run-Time Messages, SA22-7566

 Customization, SA22-7564

Programming Guide, SA22-7561

Programming Reference, SA22-7562

Run-Time Migration Guide, GA22-7565

Writing Interlanguage Communication Applications,
SA22-7563

CICS Transaction Server
Application Programming Guide, SC33-1687

Application Programming Reference, SC33-1688

Customization Guide, SC33-1683

External Interfaces Guide, SC33-1944

DB2 UDB for OS/390 and z/OS
Administration Guide, SC26-9931

An Introduction to DB2 for OS/390, SC26-9937

Application Programming and SQL Guide,
SC26-9933

Command Reference, SC26-9934

Messages and Codes, GC26-9940

SQL Reference, SC26-9944

 DFSORT
Application Programming Guide, SC33-4035

Installation and Customization, SC33-4034

 IMS/ESA
Application Programming: Database Manager,
SC26-8015

Application Programming: Database Manager
Summary, SC26-8037

Application Programming: Design Guide,
SC26-8016

Application Programming: Transaction Manager,
SC26-8017

Application Programming: Transaction Manager
Summary, SC26-8038

Application Programming: EXEC DL/I Commands
for CICS and IMS, SC26-8018

Application Programming: EXEC DL/I Commands
for CICS and IMS Summary, SC26-8036

 z/OS MVS
JCL Reference, SA22-7597

JCL User's Guide, SA22-7598

System Commands, SA22-7627

z/OS UNIX System Services
UNIX System Services Command Reference,
SA22-7802

UNIX System Services Programming: Assembler
Callable Services Reference, SA22-7803

UNIX System Services User's Guide, SA22-7801

 z/OS TSO/E
Command Reference, SA22-7782

User's Guide, SA22-7794

38  Copyright IBM Corp. 1998, 2001

 z/Architecture
Principles of Operation, SA22-7832

Unicode and character
representation

OS/390 Support for Unicode: Using Conversion
Services, SC33-7050

 Bibliography 39

 Index

A
abend codes

CICS considerations 31
AREAs and INITIAL attribute 26
array expressions restriction 8
ASMTDLI IMS interface 31
assembler driving PL/I transaction, IMS

considerations 33
assembler invocation of PL/I 25
assembler language options, IMS considerations 32
assembler support

PLIMAIN entry point 25
PLISTART entry point 25

assembler user exits
specific considerations 5

B
batch restrictions 10
built-in function restriction 10

C
CEEBXITA user exit 5
CEESTART, using 25
CICS considerations

abend codes used by PL/I 31
CSD file, updating 30
discussion of 30
linking Enterprise PL/I applications 31
macro-level interface 30
run-time output 31
SYSTEM compile-time option 30

compatibility considerations 7
PLICALLA entry point 15
PLICALLB entry point 16

compile unit definition 21
compile-time considerations 6—12

installing Language Environment 6
mixing object levels 6
storage reports 11

compiler messages 11
discussion of changes 11

condition handling
IMS considerations 33

Condition Handling Differences 19
considerations

before migrating
Condition Handling 19
DATE/TIME built-in functions 18
ILC differences 24
PLIDUMP 21
preinitialized program 18

considerations (continued)
before migrating (continued)

run-time message 21
run-time options 22
storage report 24
user return code 18

compile-time 6
installation

High-Level Language user exit 5
OS/390 requirements 4
product configuration 4
product configuration, SCEELKED 4
product configuration, SCEERUN 4

link-edit
ENTRY CEESTART requirement 13
PLICALLA and PLICALLB 13
using FETCH 13

Run-Time 15
subsystem

CICS 30
DB2 34
IMS 31

COUNT run-time option 23
CPU utilization, improving 28
CSD file, updating 30

D
data sets

new, OS/390 4
DATE/TIME built-in functions 18
DB2 considerations 34
DBCS restriction 9
DEFINED variable restriction 9
DEPTHCONDLMT run-time option 23
Descriptors clause 11

E
Enterprise PL/I library 3
ENTRY statement restriction 8
ERRCOUNT run-time option 23
EXEC DLI interface 31

F
FETCH

considerations for 13
FIXED

BINARY, mapping and portability 26
FLOW run-time option 23

40  Copyright IBM Corp. 1998, 2001

H
HEAP run-time option 23
High-Level Language user exits, using 5

I
IBMBEER user exit, installation considerations 5
IBMBXITA user exit 5
IBMFXITA user exit 5
ILC (interlanguage communication)

differences in 24
enabled languages 24

IMS considerations
assembler driving PL/I transaction 33
assembler language options support 32
condition handling 33
discussion of 31
interfaces 31
interfaces to 31
PLICALLA support 32
PSB language options 32
storage usage 33
SYSTEM compile-time option 32

INITIAL attribute 26
installation considerations

user exits 5
installing Language Environment, compile-time

considerations 6
interlanguage communication (ILC)

differences in 24
enabled languages 24

introduction
Enterprise PL/I for z/OS and OS/390 library 3
Language Environment library 3
PL/I run-time environment 2
user information 1

ISASIZE run-time option 23

L
Language Environment library 3
LANGUAGE run-time option 23
link-edit considerations

binder restrictions 14
ENTRY CEESTART requirement 13
FETCH 13
using FETCH

discussion of 13
using PLICALLA entry 13
using PLICALLB entry 13

linking applications under CICS 31

M
macro-level interface, CICS considerations 30

messages
compiler 11
PLIXOPT string errors

discussion of 11
mixing object levels, compile-time considerations 6

N
NOMAP 11

O
OS PL/I

version 1
source code compatibility 7

P
performance

CPU utilization 28
retuning for 28
storage utilization 29
under IMS, improving 29

PL/I dependency on Language Environment 6
PL/I mixing object levels 6
PLICALLA Entry Point

IMS considerations 32
passing parameters 16
Support for 15

PLICALLB entry point
passing parameters 18
support for 16

PLIDUMP
output produced by 21

PLIDUMP differences 21
PLIMAIN entry point 25
PLISTART entry point 25
PLITDLI IMS interface 31
PLIXOPT string

messages issued
discussion of 11

portability
language elements 26

preinitialized program 18
product configuration

data sets
new 4
OS/390 4

discussion of 4
programs, preinitialized 18
PSB language options, IMS considerations 32
pseudovariable restriction 10

R
record I/O restriction 10

 Index 41

REPORT run-time option 23
restrictions under Enterprise PL/I 7
retuning applications

CPU utilization 28
storage utilization, improving 29
under IMS, improving 29

run-time
behavior differences

Amode(24) Support. 27
Descriptor Format 27
INITIAL attribute for AREAs is ignored 26
language elements 26
using variables declared as FIXED BIN 26

run-time environment for PL/I 2
run-time message differences 21
run-time options differences 22
run-time output, CICS considerations 31

S
SCEELKED configuration 4
SCEERUN configuration 4
SPIE run-time option 23
STACK run-time option 23
STAE run-time option 23
storage

reports, compile-time considerations 11
usage

IMS considerations 33
retuning for 28

storage report differences 24
storage utilization, improving 29
stream I/O restrictions 9
structure expression restriction 9
subsystem considerations

CICS 30
DB2 34
IMS 31

subsystem performance, improving 29
SYSTEM compile-time option

CICS considerations 30
IMS considerations 32

T
TRAP run-time option 23

U
user exits

assembler
specific considerations 5

CEEBINT 5
CEEBXITA 5
High-Level Language 5
IBMBEER 5

user exits (continued)
IBMBXITA 5
IBMFXITA 5
installation considerations 5

user return code differences 18

42 Migration Guide

We'd Like to Hear from You

Enterprise PL/I for z/OS and OS/390
Compiler and Run-Time Migration Guide
Version 3 Release 1

Publication No. GC27-1458-00

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

Enterprise PL/I for z/OS and OS/390
Compiler and Run-Time Migration Guide
Version 3 Release 1

Publication No. GC27-1458-00

How satisfied are you with the information in this book?

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
GC27-1458-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

GC27-1458-00

IBM

Program Number: 5655-H31

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

Enterprise PL/I for z/OS and OS/390 Library

SC27-1456 Licensed Program Specifications
SC27-1457 Programming Guide
GC27-1458 Compiler and Run-Time Migration Guide
GC27-1459 Diagnosis Guide
SC27-1460 Language Reference
SC27-1461 Compile-Time Messages and Codes

GC27-1458-��

S
pine inform

ation:

IB
M

E
nterprise P

L
/I for z/O

S and O
S/390

C
om

piler and R
un-T

im
e M

igration G
uide

V
ersion 3 R

elease 1

	Contents
	Chapter 1. Introduction
	General concerns
	Run-time environment for Enterprise PL/I
	Using your documentation
	PL/I information
	Language Environment information

	Chapter 2. Installation considerations
	Product information
	Considerations for using assembler user exits
	Specific considerations

	Considerations for using high-level language user exits

	Chapter 3. Compile-time considerations
	Mixing Object Levels
	Dependency on Language Environment
	Compile-time options not supported by Enterprise PL/I
	Compatibility considerations and restrictions
	OS PL/I Version 1 source code
	ENTRY statement
	Array expressions
	Structure expressions
	DEFINED variables
	DBCS
	Stream I/O
	Record I/O
	Built-in functions
	Batch compilations
	Miscellaneous unsupported elements

	Storage report changes
	Compiler messages
	Messages that PL/I issues for errors in the PLIXOPT string

	Chapter 4. Link-edit considerations
	Using FETCH in your routines
	Using PLICALLA or PLICALLB entry
	ENTRY CEESTART requirement
	Restrictions on using the binder

	Chapter 5. Run-Time Considerations
	Differences in PLICALLA and PLICALLB Support
	PLICALLA considerations
	Passing parameters

	PLICALLB considerations
	Passing parameters

	Differences in preinitialization support
	Differences in DATE/TIME built-in functions
	Differences in user return codes
	Differences in Condition Handling
	Differences in run-time messages
	Differences in PLIDUMP
	Differences in run-time options
	Differences in storage report
	Differences in interlanguage communication support
	Differences in assembler support
	Differences in language element behavior
	Differences in Descriptor Format
	Differences in AMODE(24) Support

	Chapter 6. Tuning your Enterprise PL/I program
	Improving CPU utilization
	Improving storage utilization
	Improving performance under IMS

	Chapter 7. Subsystem considerations
	CICS considerations
	Updating CICS System Definition (CSD) file
	Macro-level interface
	SYSTEM(CICS) compile-time option
	Linking Enterprise PL/I applications under CICS
	FETCHing a PL/I MAIN procedure
	Run-time output
	Abend codes used by PL/I under CICS

	IMS considerations
	Interfaces to IMS
	SYSTEM(IMS) compile-time option
	PLICALLA Support in IMS
	PSB language options supported
	Assembler driving a PL/I transaction
	Storage usage considerations
	Coordinated condition handling under IMS
	Performance enhancement with Library Retention(LRR)

	DB2 considerations

	Appendix A. Notices
	Trademarks

	Bibliography
	Enterprise PL/I publications
	PL/I for MVS & VM
	z/OS Language Environment
	CICS Transaction Server
	DB2 UDB for OS/390 and z/OS
	DFSORT™
	IMS/ESA®
	z/OS MVS
	z/OS UNIX System Services
	z/OS TSO/E
	z/Architecture
	Unicode® and character representation

	Index

